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Abstract In this paper, we study the existence theorems of systems of variational inclu-
sions problems. As consequences of our results, we study existence theorems of systems
of generalized vector quasi-equilibrium problems, mathematical program with systems of
variational inclusion constraints, bilevel problem with systems of constraints.
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1 Introduction

Let I be any index set. For each i ∈ I , let Zi be a real topological vector space (in short t.v.s.),
Xi and Yi be nonempty closed convex subsets of locally convex t.v.s. Ei and Vi , respectively.
Let X = ∏

i∈I Xi , Y = ∏
i∈I Yi . For each i ∈ I , let Ai : X × Y � Xi , Ti : X � Yi ,

Gi : X × Y × Yi � Zi , Ci : X � Zi be multivalued maps. Throughout this paper, we use
these notations unless otherwise specified. Recently, Lin [1] studied the following systems
of variational inclusion problems:
(SVIP1) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and 0 ∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

In [1], Lin established the existence theorems of (SVIP1), he also gave some applications.
For detail, one can refer to [1].

Let E be a t.v.s., X be a nonempty subset of E and f : X × X → R be a function with
f (x, x) ≥ 0 for all x ∈ X, then the scalar equilibrium problem in the sense of Blum and
Oettli [2] is to find x̄ ∈ X such that f (x̄, y) ≥ 0 for all y ∈ X. The equilibrium problem
contains optimization problems, fixed point problems, saddle point problems, complementary
problems, and Ekeland’s variational problems as special cases [2–5]. This problem was
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extensively investigated and generalized to the vector equilibrium problem for single valued
or multivalued mappings [3,6–10] and references therein.

In this paper, we apply an existence theorem of (SVIP1) to study systems of generalized
quasi-variational disclusions problem:
(SVDP) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and 0 /∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

(SVDP) contains the following problems as special cases:
(SVIP2) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, vi) ⊆ Hi(x̄, ȳ) for all vi ∈ Ti(x̄), where Hi : X × Y � Zi is a
multivalued map.
(SVIP3) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, vi) ⊆ Gi(x̄, ȳ, ȳi ) + Ci(x̄) for all vi ∈ Ti(x̄).
(SVIP4) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Si(x̄),
ȳi ∈ Ti(x̄), Fi(x̄, ȳ) ⊆ Ci(x̄), and Gi(x̄, ȳ, vi) ⊆ Gi(x̄, ȳ, ȳi ) + Ci(x̄) for all vi ∈ Ti(x̄),
where Fi : X × Y � Zi and Si : X � Zi are multivalued maps.
(SVIP5) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Hi(x̄, ȳ) ⊆ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).
(SVIP6) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, ȳi ) ⊆ Gi(x̄, ȳ, vi) − Ci(x̄) for all vi ∈ Ti(x̄).

If we let Hi(x, y) = Zi \ (−int Ci(x)) or Hi(x, y) = Ci(x), we have the following
systems of generalized vector quasi-equilibrium problem.
(SEP1) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, vi) ∩ (−int Ci(x̄)) = ∅ for all vi ∈ Ti(x̄).
(SEP2) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, vi) ⊆ Ci(x̄) for all vi ∈ Ti(x̄).

Lin and Tan [11,12] studied (SVIP3) for the case that I is a singleton, and Ci(x) = Ci is
a convex cone for each x ∈ X. But in (SVIP2) and (SVIP3), Ci(x) is not assumed to be a
cone.

Lin and Hsu [13], and Lin et al. [3,8,9] studied (SEP1) and (SEP2) when Ci(x) is a cone
for each x ∈ X. But in (SEP1) and (SEP2), Ci(x) is not assumed to be a cone.

Luc and Tan [5], Tan [14], Lin and Tan [11,12] studied (SVIP6) when Ci(x) = Ci is a
cone for all x ∈ X.

If we assume that IMin(Gi(x, y, yi)/Ci(x)) �= ∅ for all (x, y) = (x, (yi)i∈I ) ∈ X × Y ,
then (SVIP4) will be reduced to the problem:
(SQOP1) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , Fi(x̄, ȳ) ⊆
Ci(x̄), and Gi(x̄, ȳ, ȳi ) ∩ IMin(Gi(x̄, ȳ, Ti(x̄i ))/Ci(x̄)) �= ∅, where Ci : X � Zi is a
closed multivalued map such that for each x ∈ X, Ci(x) is a nonempty closed convex cone.

If we let Hi(x, y) = {0} for all (x, y) ∈ X × Y and i ∈ I , then (SVIP5) will be reduced
to (SVIP1).

If Fi : X × Y � Zi , Si : X � Xi , Z0 is a real t.v.s. and C0 is a proper closed convex
cone in Z0 and f : X × Y � Z0. We also study the following bilevel problem.
(BLEP1) Min(h(x, y)/C0) �= ∅, x ∈ X, y = (yi)i∈I such that for each i ∈ I , yi ∈ Ti(x),
xi ∈ Si(x), Fi(x, y) ⊆ Ci(x), and Gi(x, y, yi) ∩ IMin(Gi(x, y,Ti(x))

/Ci(x)) �= ∅.
If Zi = R and Ci(x) = [0,∞) for all i ∈ I , and Z0 = R , and C0 = [0,∞), and Fi

and Gi are single valued functions, then (BLEP1) will be reduced to the following bilevel
problem:
(BLEP2) Min(h(x, y)/C0) �= ∅, x ∈ X, y = (yi)i∈I ∈ Y such that for each i ∈ I , yi ∈
Ti(x), xi ∈ Si(x), Fi(x, y) ≥ 0, and yi is a solution of the problem Minvi∈Ti (x)Gi(x, y, vi).
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Lin and Hsu [13] studied (BLEP2).
If Gi(x, y, yi) ≥ 0 for all x ∈ X and y = (yi)i∈I ∈ Y , then (BLEP2) will be reduced to

the following mathematical program with systems of equilibrium constraints:
(MPEC) Min h(x, y), x ∈ X, y = (yi)i∈I ∈ Y such that for each i ∈ I , xi ∈ Si(x),
yi ∈ Ti(x), Fi(x, y) ≥ 0, and Gi(x, y, vi) ≥ 0 for all vi ∈ Ti(x).

Lin and Still [15], Lin [16], Lin and Hsu [13] studied MPEC, but our approach is different
from [15] and [16].

In this paper, we apply the existence theorem of systems of variational inclusion pro-
blems (SVIP1) in [1] to study the existence theorems of systems of variational disclusions
problems (SVDP), systems of variational inclusions problems (SVIP2-6). Our approach to
study (SVIP3) and (SVIP6) are much simple than Theorem 3.6 in Lin et al. [11,12]. Our
results cannot be obtained from Lin et al. [11,12]. We establish the equivalent relations
between (SVIP1), (SVIP5) and (SVDP) under some conditions. We also study existence
theorems (SEP1) and (SEP2). As application of our results, we study (BLEP1) and (BLEP2).
We also study (SVIP3) and (SVIP6) and (BLEP1) with different approach for the case
Ai(x, y) = Si(x) = Xi for all (x, y) ∈ X × Y and i ∈ I .

Recently, Lin and Liu [9], Lin et al. [8] used existence theorems of abstract economy
to study (SEP1) and (SEP2), and gave applications. In this paper, we apply systems of
variational disclusion problems to study (SEP1), (SEP2), (BLEP1), and (BLEP2). Our results
on (BLEP1) is different from Corollary 5.3 in [13], Corollary 3.1 in [16], Theorem 4.6 in
[16], and Corollary 3 in [15].

2 Preliminaries

Let X and Y be topological spaces (in short t.s.), T : X � Y be a multivalued map. T is
said to be upper semicontinuous (in short u.s.c.), respectively, lower semicontinuous (in short
l.s.c.) at x ∈ X, if for every open set U in Y with T (x) ⊆ U (resp. T (x) ∩ U �= ∅), there
exists an open neighborhood V (x) of x such that T (x′) ⊆ U (resp. T (x′) ∩ U �= ∅) for all
x′ ∈ V (x); T is said to be u.s.c. (resp. l.s.c.) on X if T is u.s.c. (resp. l.s.c.) at every point of
X; T is continuous at x if T is u.s.c. and l.s.c. at x ; T is compact if there exists a compact
set K such that T (X) ⊆ K; T is closed if Gr(T ) = {(x, y) : y ∈ T (x), x ∈ X} is a closed
set.

Let Z be a real t.v.s. with a pointed cone C and A be a nonempty subset of Z. (i) x ∈ A is
said to be an ideal minimal (resp. ideal maximal) point of A with respect to C if y − x ∈ C

(resp. x − y ∈ C) for every y ∈ A. The set of ideal minimal point of A is denoted by
IMin(A/C). The set of ideal maximal point of A is denoted by IMax(A/C). (ii) x ∈ A is
said to be an efficient point of A w.r.t. C if there is no y ∈ A such that x − y ∈ C \ {0}. The
set of efficient point of A is denoted by Min(A/C).

Theorem 2.1 [17] Let I be any index set and let Xi be a nonempty convex subset of a t.v.s.
Ei , X = ∏

i∈I Xi . For each i ∈ I , let Pi,Qi : X � Xi be multivalued maps satisfying the
following conditions:

(i) For each x ∈ X, coPi(x) ⊆ Qi(x);
(ii) For each x = (xi)i∈I ∈ X, xi /∈ Qi(x);

(iii) For each yi ∈ Xi , P −1
i (yi) is open; and
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(iv) There exist a nonempty compact subset K of X and a compact convex subset Di of Xi

for all i ∈ I such that for each x ∈ X \ K , there exist j ∈ I and yj ∈ Dj such that
x ∈ P −1

j (yj ).

Then there exists x̄ ∈ X such that Pi(x̄) = ∅ for all i ∈ I .

Throughout this paper, we assume that all topological spaces are Hausdorff.

3 Existence results for a solution of systems of generalized quasi-variational
inclusions problems

The following theorem is a variant of Theorem 3.1 [1], its proof is essentially the same as
in Theorem 3.1 [1].

Theorem 3.1 [1] For each i ∈ I , suppose that

(i) Ai is a compact u.s.c. multivalued map with nonempty closed convex values;
(ii) Ti is a compact continuous multivalued map with nonempty closed convex values;

(iii) Gi is a closed multivalued map with nonempty values and for each x ∈ X, Qi(x) =
{yi ∈ Ti(x): 0 ∈ Gi(x, y, vi) for all vi ∈ Ti(x) and for y = (yi)i∈I ∈ Y } is a convex
set;

(iv) For each (x, y) = (x, (yi)i∈I ) ∈ X ×Y , vi � Gi(x, y, vi) is {0}-quasiconvex-like [1]
and 0 ∈ Gi(x, y, yi).

Then these exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X×Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and 0 ∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

Remark 3.1 In Theorem 3.1, the condition “for each (x, y) ∈ X × Y , vi � Gi(x, y, vi) is
{0}-quasiconvex” is replaced by “for each x ∈ X, Qi(x) is convex,” where Qi(x) is defined
as in (iii).

As a consequence of systems of generalized quasi-variational inclusions problems, we
have the following existence theorem of systems of generalized quasi-variational disclusion
problem.

Theorem 3.2 Suppose that conditions (i) and (ii) of Theorem 3.1 are satisfied. For each
i ∈ I , suppose that

(iii) Gi is a multivalued map with open graph, Gi(x, y, vi) �= Zi for all (x, y, vi) ∈
X × Y × Yi , and for each x ∈ X, Qi(x) = {yi ∈ Ti(x) : 0 /∈ Gi(x, y, vi) for all
vi ∈ Ti(x) and for y = (yi)i∈I ∈ Y } is a convex set;

(iv) For each (x, y) = (x, (yi)i∈I ) ∈ X × Y , vi � Gi(x, y, vi) is {0}-quasiconvex and
0 /∈ Gi(x, y, yi).

Then there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X×Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and 0 /∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

Proof Let Hi : X×Y ×Yi be defined by Hi(x, y, vi) = Zi \Gi(x, y, vi) for all (x, y, vi) ∈
X×Y ×Yi . By (iii), Hi is a closed multivalued map with nonempty values and for each x ∈ X,
Qi(x) = {yi ∈ Ti(x) : 0 ∈ Hi(x, y, vi) for all vi ∈ Ti(x) and for y = (yi)i∈I ∈ Y } is convex.
By (iv), for each (x, y) = (x, (yi)i∈I ) ∈ X × Y , vi � Hi(x, y, vi) is {0}-quasiconvex-like
and 0 ∈ Hi(x, y, yi). Then by Theorem 3.1 there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y

such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄), and 0 /∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).
�
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The following two lemmas are essential tools in this paper.

Lemma 3.1 Let X and Y be topological spaces, H : X � Y be a multivalued map with
open graph and M : X � Y be a l.s.c. multivalued map, then (H + M) : X � Y , defined
by (H + M)(x) = H(x) + M(x) for each x ∈ X, is a multivalued map with open graph.

Proof Let (x, y) ∈ [Gr(H + M)]c. Then these exists a net {(xα, yα)}α∈� in [Gr(H +M)]c
such that (xα, yα) → (x, y). Then yα /∈ H(xα) + M(xα) for all α ∈ �. We want to show
that y /∈ H(x) + M(x). Suppose that y ∈ H(x) + M(x), then these exist u ∈ H(x) and
v ∈ M(x) such that y = u + v. Since M is l.s.c. and xα → x, these exists a net {vα}α∈�

such that vα ∈ M(xα) for all α ∈ � and vα → v. We see yα − vα ∈ Y \ H(xα).

Let F : X � Y be defined by F(x) = Y \ H(x). By assumption, F has closed graph.
Hence, u = y − v ∈ F(x) = Y \ H(x). Therefore, u = y − v /∈ H(x). This leads to
a contradiction. This shows that y /∈ H(x) + M(x). Hence (x, y) ∈ [Gr(H + M)]c and
[Gr(H + M)]c is a closed set. Therefore, H + M has open graph. �

Lemma 3.2 Let X and Y be topological spaces, G : X � Y be an u.s.c. multivalued map
with nonempty compact values and M : X � Y be a closed multivalued map, then the map
(G + M) : X � Y , defined by (G + M)(x) = G(x) + M(x) for each x ∈ X, is a closed
map.

Proof Let (y, z) ∈ Gr(G + M). Then there exists a net {(yα, zα)}α∈� in Gr(G + M)

such that (yα, zα) → (y, z). One has zα ∈ M(yα) + G(yα) and there exists uα ∈ M(yα),
vα ∈ G(yα) such that zα = uα +vα . Let K = {yα : α ∈ �}∪{y}. Then K is a compact set in
X. Since G : X � Y is an u.s.c. multivalued map with nonempty compact values, G(K) is
a compact set. Then {vα}α∈� has a subnet {vαλ}αλ∈� such that vαλ → v. Since G is an u.s.c.
multivalued map with nonempty compact values, G is closed. Hence, v ∈ G(y). Clearly,
uαλ = zαλ−vαλ → z−v. Since M is closed, z−v ∈ M(y) and z ∈ v+M(y) ⊆ M(y)+G(y).
This shows that Gr(G + M) = Gr(G + M) and (G + M) : Y � U is closed. �

Theorem 3.3 Suppose conditions (i) and (ii) of Theorem 3.1 are satisfied. For each i ∈ I ,
suppose that

(iii) Hi : X ×Y � Zi is a closed multivalued map with with nonempty values and for each
x ∈ X, y � Hi(x, y) is affine [1];

(iv) Gi is a l.s.c. multivalued map such that for each (x, vi) ∈ X × Yi , y � Gi(x, y, vi) is
affine and Gi(x, y, vi) − (Zi \ Hi(x, y)) �= Zi for all (x, y, vi) ∈ X × Y × Yi;

(v) For each (x, y) = (x, (yi)i∈I ) ∈ X × Y , vi � Gi(x, y, vi) is {0}- quasiconvex [1]
and Gi(x, y, yi) ⊆ Hi(x, y).

Then there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X×Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, vi) ⊆ Hi(x̄, ȳ) for all vi ∈ Ti(x̄).

Proof Let Pi : X×Y ×Yi � Zi be defined by Pi(x, y, vi) = Gi(x, y, vi)−(Zi \Hi(x, y)).
By (iii) and (iv), Pi has open graph and Pi(x, y, vi) �= Zi for all (x, y, vi) ∈ X × Y × Yi .
For each x ∈ X, let Qi(x) = {yi ∈ Ti(x) : 0 /∈ Pi(x, y, vi) for all vi ∈ Ti(x) and for
y = (yi)i∈I ∈ Y }. It is easy to see that Qi(x) = {yi ∈ Ti(x) : Gi(x, y, vi) ⊆ Hi(x, y)

for all vi ∈ Ti(x) and y = (yi)i∈I ∈ Y } and Qi(x) is a convex set for each i ∈ I . Indeed,
if y1

i , y2
i ∈ Qi(x) and λ ∈ [0, 1]. Let y1 = (y1

i )i∈I , y2 = (y2
i )i∈I . Then y1, y2 ∈ Y ,

y1
i , y2

i ∈ Ti(x) and Gi(x, y1, vi) ⊆ Hi(x, y1), Gi(x, y2, vi) ⊆ Hi(x, y2) for all vi ∈ Ti(x).
By (iii) and (iv), Gi(x, λy1 + (1 − λ)y2, vi) = λGi(x, y1, vi) + (1 − λ)Gi(x, y2, vi) ⊆
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λHi(x, y1)+(1−λ)Hi(x, y2) = Hi(x, λy1 +(1−λ)y2). We also have λy1 +(1−λ)y2 ∈ Y

and λy1
i + (1−λ)y2

i ∈ Ti(x). This shows that λy1
i + (1−λ)y2

i ∈ Qi(x) and Qi(x) is convex.
By (v), for each (x, y) = (x, (yi)i∈I ) ∈ X × Y , vi � Pi(x, y, vi) is {0}-quasiconvex and
0 /∈ Pi(x, y, yi). Then by Theorem 3.2, there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y

such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 /∈ Pi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).
That is, Gi(x̄, ȳ, vi) ⊆ Hi(x̄, ȳ) for all vi ∈ Ti(x̄). �

As a simple consequence of Theorem 3.3, we have the following existence theorems of
systems of variational inclusions problems and systems of equilibrium problems.

Theorem 3.4 Assume conditions (i) and (ii) of Theorem 3.1 are satisfied. For each i ∈ I ,
suppose that:

(iii) Ci : X � Zi is a closed multivalued map such that Ci(x) is a convex set and 0 ∈ Ci(x)

for each x ∈ X;
(iv) Gi is a continuous multivalued map with nonempty closed values such that for each

x ∈ X, (y, vi) � Gi(x, y, vi) is affine;
(v) For each (x, y) = (x, (yi)i∈I ) ∈ X × Y , vi � Gi(x, y, vi) is Ci(x)-quasiconvex [1]

and Gi(x, y, vi) − [Zi \ (Gi(x, y, yi) + Ci(x))] �= ∅.

Then there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X×Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, vi) ⊆ Gi(x̄, ȳ, ȳi ) + Ci(x̄) for all vi ∈ Ti(x̄).

Proof Let Hi : X × Y � Zi be defined by Hi(x, y) = Gi(x, y, yi) + Ci(x) for each
(x, y) = (x, (yi)i∈I ) ∈ X × Y . By (iii), (iv) and Lemma 3.2 that Hi is a closed multivalued
map with nonempty values and for each x ∈ X, y � Hi(x, y) is affine. Since 0 ∈ Ci(x)

for all x ∈ X, Gi(x, y, yi) ⊆ Gi(x, y, yi) + Ci(x) for each (x, y) = (x, (yi)i∈I ) ∈ X × Y .
Then Theorem 3.4 follows from Theorem 3.3. �

Remark 3.2 In Theorem 3.4 we do not assume that Ci(x) is a cone, but in Theorem 3.6 [11]
and Theorem 3.6 [12], Ci(x) is a constant closed convex cone. The proof of Theorem 3.4
is much simple than the proofs of Theorem 3.6 in [11,12]. Indeed, Theorem 3.4 cannot be
obtained from Theorem 3.6 in [11,12].

If we let Hi(x, y) = Ci(x) for all (x, y) ∈ X × Y , we have the following existence
theorem of systems of equilibrium problem.

Corollary 3.1 In Theorem 3.4, for each i ∈ I , suppose that

(iv) Gi is a l.s.c multivalued map such that for each x ∈ X, (y, vi) � Gi(x, y, vi) is affine
and Ci is a closed multivalued map with nonempty values and Ci(x) is a convex set for
each x ∈ X;

(v) For each (x, y) = (x, (yi)i∈I ) ∈ X × Y , vi � Gi(x, y, vi) is Ci(x)-quasiconvex,
Gi(x, y, yi) ⊆ Ci(x) and Gi(x, y, vi) − [Zi \ (Ci(x))] �= Zi for all (x, y, vi) ∈
X × Y × Yi .

Then there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X×Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, vi) ⊆ Ci(x̄) for all vi ∈ Ti(x̄).

If we let Hi(x, y) = Zi \ (−int Ci(x)) for all (x, y) ∈ X × Y , we have the following
existence theorem of systems of equilibrium problem.

Corollary 3.2 Assume that conditions (i), (ii), and (iii) of Theorem 3.1 are satisfied. For
each i ∈ I , suppose that
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(iv) Wi : X � Zi is an u.s.c. multivalued map with nonempty values, where Wi(x) =
Zi \ (−int Ci(x)) and Ci : X � Zi is a multivalued map such that int Ci(x) �= ∅ for
all x ∈ X;

(v) For each (x, y) ∈ X × Y , y = (yi)i∈I , vi � Gi(x, y, vi) is Ci(x)-quasiconvex,
Gi(x, y, vi) ∩ (−int Ci(x)) = ∅ and Gi(x, y, vi) − [Zi \ (−int Ci(x))] �= Zi for all
(x, y, vi) ∈ X × Y × Yi .

Then there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X×Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, vi) ∩ (−int Ci(x̄)) = ∅ for all vi ∈ Ti(x̄).

Proof Let Hi(x, y) = Zi \ (−int Ci(x)). Then Corollary 3.2 follows immediately from
Theorem 3.3. �

Remark 3.3 In Corollaries 3.1 and 3.2, we do not assume that Ci(x) is a cone for each x ∈ X.
Therefore, Corollaries 3.1 and 3.2 are different from Theorems 3.1 and 3.6 in [13]. Our proof
of Corollaries 3.1 and 3.2 are much simple than Theorems 3.1 and 3.6 in [13].

Theorem 3.5 Suppose conditions (i) and (ii) of Theorem 3.1 are satisfied. For each i ∈ I ,
suppose that

(iii) Hi : X × Y � Zi is a l.s.c. multivalued map and for each x ∈ X, y � Hi(x, y) is
affine; Hi(x, y) − [Zi \ Gi(x, y, vi)] �= Zi for all (x, y, vi) ∈ X × Y × Yi;

(iv) Gi is a closed multivalued map with nonempty values and for each x ∈ X, y �
Gi(x, y, vi) is affine;

(v) For each (x, (yi)i∈I ) ∈ X × Y , vi � Gi(x, y, vi) is {0}-quasiconvex-like [1] and
Hi(x, y) ⊆ Gi(x, y, yi).

Then there exists (x̄, ȳ) = (x̄, (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Hi(x̄, ȳ) ⊆ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

Proof Let Fi : X×Y ×Yi � Zi be defined by Fi(x, y, vi) = Hi(x, y)−[Zi \Gi(x, y, vi)]
for all (x, y, vi) ∈ X×Y ×Yi . By (iii), (iv) and Lemma 3.1 that Fi is a multivalued map with
open graph. For each x ∈ X, let Qi(x) = {yi ∈ Ti(x) : 0 /∈ Fi(x, y, vi) for all vi ∈ Ti(x)

and for y = (yi)i∈I ∈ Y }. Then Qi(x) = {yi ∈ Ti(x) : Hi(x, y) ⊆ Gi(x, y, vi) for all
vi ∈ Ti(x) and for y = (yi)i∈I ∈ Y }. By (iii) and (iv), Qi(x) is a convex for each x ∈ X.
By (v), 0 /∈ Fi(x, y, yi) for each (x, y) = (x, (yi)i∈I ) ∈ X × Y . By (iii), Fi(x, y, vi) �= Zi

for all (x, y, vi) ∈ X × Y × Yi , By (v), for each (x, y) ∈ X × Y , vi � Fi(x, y, vi) is
{0}-quasiconvex. Then Theorem 3.5 follows from Theorem 3.2. �

As a simple consequence of Theorem 3.5, we have the following existence theorem of
systems of generalized lower quasi-variational inclusions problems.

Theorem 3.6 Suppose conditions (i) and (ii) of Theorem 3.1 are satisfied. For each i ∈ I ,
suppose that

(iii) Ci : X � Zi is a closed multivalued map such that Ci(x) is a convex set and 0 ∈ Ci(x)

for each x ∈ X;
(iv) Gi is a continuous multivalued map with nonempty closed values, and for each x ∈ X,

(y, vi) � Gi(x, y, vi) is affine, and for each x ∈ X, y = (yi)i∈I ∈ Y , vi ∈ Yi ,
Gi(x, y, yi) ⊆ Gi(x, y, vi) − Ci(x);

(v) For each x ∈ X, y = (yi)i∈I ∈ Y , vi � Gi(x, y, vi) is {0}-quasiconvex-like and
Gi(x, y, yi) − [Zi \ (Gi(x, y, vi) − Ci(x))] �= Zi .
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Then there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X×Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, ȳi ) ⊆ Gi(x̄, ȳ, vi) − Ci(x̄) for all vi ∈ Ti(x̄).

Proof Apply Theorem 3.5 and follow the same argument as in Theorem 3.4, we can prove
Theorem 3.6. �

Theorem 3.7 Theorem 3.1, 3.2 and 3.5 are equivalent.

Proof We see that Theorem 3.1 implies Theorem 3.2, and Theorem 3.2 implies Theorem
3.5. We want to show that Theorem 3.5 implies Theorem 3.1. Under the assumptions of
Theorem 3.1. For each i ∈ I , let Hi : X × Y � Zi be defined by Hi(x, y) = {0} for all
(x, y) ∈ X × Y . Since Gi(x, y, vi) �= ∅ for all (x, y, vi) ∈ X × Y × Yi , Hi(x, y) − (Zi \
Gi(x, y, vi)) = −(Zi \ Gi(x, y, vi)) �= Zi . Then Theorem 3.1 follows from Theorem 3.5.
Therefore, Theorems 3.1, 3.2 and 3.5 are equivalent. �

Theorem 3.8 In Theorem 3.4, if we assume further that Ci(x) is a convex cone for each
x ∈ X and for each (x, y) = (x, (yi)i∈I ) ∈ X × Y , IMin(Gi(x, y, yi)/Ci(x)) �= ∅. Then
there exits (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄), and Gi(x̄, ȳ, ȳi ) ∩ IMin(Gi(x, y, yi)/Ci(x)) �= ∅.

Proof Let Hi(x, y) = Gi(x, y, yi) + Ci(x). Since IMin(Gi(x, y, yi)/Ci(x)) �= ∅. It is
easy to see that IMin(Hi(x, y)/Ci(x)) �= ∅. Then Theorem 3.8 follows from Theorem 3.3.

�

Theorem 3.9 Suppose condition (i), (iii), (iv) and (v) of Theorem 3.4. for each i ∈ I , suppose
that

(ii) Si : X � Xi is an compact u.s.c. multivalued map with nonempty closed convex values;
(vi) Fi : X × Y � Zi is a l.s.c. multivalued map with nonempty closed values and for

each x ∈ X, there exists y = (yi)i∈I ∈ Y such that yi ∈ Ti(x), Fi(x, y) ⊆ Ci(x) and
y � Fi(x, y) is Ci(x)-quasiconvenx-like.

Then there exists (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I , x̄i ∈ Si(x̄),
ȳi ∈ Ti(x̄), Fi(x̄, ȳ) ⊆ Ci(x̄) and Gi(x̄, ȳ, ȳi ) ⊆ Gi(x̄, ȳ, vi) + Ci(x̄) for all vi ∈ Ti(x̄).

Proof For each i ∈ I , let Li : X � Zi be defined by Li(x) = {yi ∈ Ti(x) : Fi(x, y) ⊆
Ci(x) for y = (yi)i∈I ∈ Y } for each x ∈ X. It is easy to see that Li is a compact u.s.c.
multivalued map with nonempty closed convex values. Then Theorem 3.9 follows from
Theorem 3.4. �

Theorem 3.10 Let X be a nonempty subset of a topological vector space E, I be any index
set. For each i ∈ I , let Yi be a nonempty convex subset of a t.v.s. Vi , Zi be a real t.v.s.. For
each i ∈ I , suppose that

(i) Ci : X � Zi is a multivalued map such that for each x ∈ X, Ci(x) is a nonempty
closed convex cone;

(ii) Gi : X×Yi ×Yi � Zi is an u.s.c. multivalued map with nonempty compact values such
that for each (x, vi) ∈ X×Yi , yi � Gi(x, yi, vi) is l.s.c. and for each (x, vi) ∈ X×Yi ,
yi � Gi(x, yi, vi) is Ci(x)-quasiconvex;

(iii) Ti : X � Yi is a multivalued map with nonempty closed convex values;
(iv) There exist a nonempty compact subset K of Y and a nonempty compact convex subset

Di of Yi for all i ∈ I such that for each y = (yi)i∈I ∈ Y \ K and each x ∈ X, there
exist j ∈ I and uj ∈ Tj (x) such that Gj(x, yj , uj ) � Gj(x, yj , yj ) + Cj (x).
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Then for each x ∈ X, there exists ȳ = (ȳi )i∈I ∈ Y such that for each i ∈ I , ȳi ∈ Ti(x), and
Gi(x, ȳi , vi) ⊆ Gi(x, ȳi , ȳi ) + Ci(x) for all vi ∈ Ti(x).

Proof For each i ∈ I and x ∈ X, let Pi(x) : ∏
i∈I Ti(x) � Ti(x) be defined by Pi(x)(y) =

{vi ∈ Ti(x) : Gi(x, yi, vi) � Gi(x, yi, yi) + Ci(x)} for each y = (yi)i∈I ∈ Y . Then for
each y = (yi)i∈I , yi /∈ Pi(x)(y). For each i ∈ I , x ∈ X and y ∈ ∏

i∈I Ti(x), Pi(x)(y) is
convex. Indeed, let v1

i , v
2
i ∈ Pi(x)(y) and λ ∈ [0, 1], then v1

i , v
2
i ∈ Ti(x) and Gi(x, yi, v

1
i ) �

Gi(x, yi, yi) + Ci(x) and Gi(x, yi, v
2
i ) � Gi(x, yi, yi) + Ci(x). Assume vλ

i = λv1
i + (1 −

λ)v2
i . Then vλ

i ∈ Ti(x). Suppose that there exists λ0 ∈ (0, 1) such that v
λ0
i /∈ Pi(x)(y), then

Gi(x, yi, v
λ0
i ) ⊆ Gi(x, yi, yi) + Ci(x). Since for each (x, yi) ∈ X × Yi , vi � Gi(x, yi, vi)

is Ci(x)-quasiconvex,

either Gi(x, yi, v
1
i ) ⊆ Gi(x, yi, v

λ0
i ) + Ci(x)

⊆ Gi(x, yi, yi) + Ci(x) + Ci(x) ⊆ Gi(x, yi, yi) + Ci(x),
or Gi(x, yi, v

2
i ) ⊆ Gi(x, yi, v

λ0
i ) + Ci(x) ⊆ Gi(x, yi, yi) + Ci(x).

This leads to a contradiction. Therefore, vλ
i ∈ Pi(x)(y) and Pi(x)(y) is convex for each

y ∈ ∏
i∈I Ti(x).

[∏i∈I Ti(x)] \ [Pi(x)]−1(ui) is a closed set in
∏

i∈I Ti(x) for each ui ∈ Ti(x). Indeed,

if y ∈ [∏i∈I Ti(x)] \ [Pi(x)]−1(ui), then there exists a net {yα}α∈� in [∏i∈I Ti(x)] \
[Pi(x)]−1(ui) such that yα = (yα

i )i∈I for all α ∈ � and yα → y. One has yα
i ∈ Ti(x)

and Gi(x, yα
i , ui) ⊆ Gi(x, yα

i , yα
i ) + Ci(x). Let zi ∈ Gi(x, yi, ui). By assumption, for

each (x, ui) ∈ X × Yi , yi � Gi(x, yi, ui) is l.s.c., there exist a net {zα
i }α∈� such that

zα
i ∈ Gi(x, yα

i , ui) for all α ∈ � and zα
i → zi . We follow the same arguments as in

Theorem 3.1, we show that [∏i∈I Ti(x)] \ [Pi(x)]−1(ui) is closed in
∏

i∈I Ti(x). Therefore,
[Pi(x)]−1(ui) is open in

∏
i∈I Ti(x).

By (iv), for each y ∈ ∏
i∈I Ti(x) \ K and for each x ∈ X there exist j ∈ I , uj ∈ Tj (x)

such that for each x ∈ X, y ∈ [Pi(x)]−1(ui). Then by Theorem 2.1 that for each x ∈ X there
exists ȳ = (ȳi )i∈I ∈ ∏

i∈I Ti(x) such that Pi(x)(ȳ) = ∅. Then for each i ∈ I , ȳ ∈ Ti(x)

and Gi(x, ȳi , vi) ⊆ Gi(x, ȳi , ȳi ) + Ci(x) for all vi ∈ Ti(x). �

Corollary 3.3 Theorem 3.10 is true if condition (iv) of Theorem 3.10 is replaced by (iv′),
where

(iv′) Ti : X � Yi is a multivalued map with nonempty compact convex values.

Proof Since Ti(x) is a compact set for each x ∈ X,
∏

i∈I Ti(x) is a compact set for each
x ∈ X. Then condition (iv) of Theorem 2.1 is satisfied by taking Y = ∏

i∈I Ti(x) = K . �

4 Applications to bilevel problem

As a consequence of Theorems 3.4 and 3.10, we establish an existence theorem of mathema-
tical program with system of variational inclusion constrains from which we establish that
existence theorems of bilevel problem.

Theorem 4.1 Let I , Ei , Vi , Xi , Yi , X, Y , Ti and Zi be the same as in Theorem 3.4. Let Z0

be a real t.v.s. and C0 be a proper closed convex cone in Z0. For each i ∈ I , suppose that

(i) Ci : X � Zi is a closed multivalued map such that Ci(x) is a convex set and 0 ∈ Ci(x)

for each x ∈ X;
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(ii) Fi : X × Y � Zi is a l.s.c. multivalued map such that for each x ∈ X, y � Fi(x, y)

is Ci(x)-quasiconvex-like;
(iii) Si : X � Xi is a compact u.s.c. multivalued map with nonempty closed convex values;
(iv) For each x ∈ X, there exists w = (wi)i∈I ∈ Y such that wi ∈ Si(x), Fi(w, y) ⊆ Ci(x);
(v) Gi : X × Y × Yi � Zi is a continuous multivalued map with nonempty compact

values such that for each x ∈ X, (y, vi) � Gi(x, y, vi) is affine and for each
(x, y) ∈ X × Y , vi � Gi(x, y, vi) is Ci(x)-quasiconvex; and Gi(x, y, vi) − [Zi \
(Gi(x, y, yi)+Ci(x))] �= Zi for all (x, y, vi) ∈ X × Y × Yi;

(vi) f : X × Y � Z0 is an u.s.c. multivalued map with nonempty compact values.

Then there exists a solution to the following problem:
Min(f (M)/C0) �= ∅, where M = {(x, y) : x = (xi)i∈I ∈ X, y = (yi)i∈I such that for all
i ∈ I , xi ∈ Si(x), yi ∈ Ti(x), Fi(x, y) ⊆ Ci(x), and Gi(x, y, vi) ⊆ Gi(x, y, yi) + Ci(x)

for all vi ∈ Ti(x) }.

Proof For each i ∈ I , let Mi = {(x, y) : x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y , xi ∈ Si(x),
yi ∈ Ti(x), Fi(x, y) ⊆ Ci(x), and Gi(x, y, vi) ⊆ Gi(x, y, yi) + Ci(x) for all vi ∈ Ti(x)}.
Then M = ∩i∈IMi . By Theorem 3.9, M �= ∅.

For each i ∈ I , Mi is closed. Indeed, if (x, y) ∈ Mi , then there exists a net {(xα, yα) : α ∈
�} in Mi such that (xα, yα) → (x, y). One has xα = (xα

i )i∈I ∈ X, yα = (yα
i )i∈I ∈ Y , xα

i ∈
Si(x

α), yα
i ∈ Ti(x

α), Fi(x
α, yα) ⊆ Ci(x

α) and Gi(x
α, yα, vi) ⊆ Gi(x

α, yα, yα
i ) + Ci(x

α)

for all vi ∈ Ti(x
α). Let vi ∈ Ti(x). Since Ti is l.s.c., there exists a net {vα

i }α∈� such that vα
i ∈

Ti(x
α) for all α ∈ � and vα

i → vi . We have Gi(x
α, yα, vα

i ) ⊆ Gi(x
α, yα, yα

i )+Ci(x
α). Let

ui ∈ Gi(x, y, vi). Since Gi is l.s.c., there exists a net {uα
i }α∈� such that uα

i ∈ Gi(x
α, yα, vα

i )

for all α ∈ � and uα
i → ui . We have uα

i = wα
i + cα

i for some cα
i ∈ Ci(x

α), and wα
i ∈

Gi(x
α, yα, yα

i ). Let K = {xα : α ∈ �} ∪ {x}, L = {yα : α ∈ �} ∪ {y} and Li = {yα
i : α ∈

�} ∪ {yi}. Then K , L and Li are compact sets. Since Gi is an u.s.c. multivalued map with
compact values, Gi(K × L × Li) is a compact set (see [7]). Hence, {wα

i }α∈� has a subnet
{wαλ

i }αλ∈� such that w
αλ

i → wi ∈ Gi(K × L × Li). But c
αλ

i = u
αλ

i − w
αλ

i ∈ Ci(x
α),

c
αλ

i → ui − wi , and Ci is closed, ui − wi ∈ Ci(x). By assumption (x, y) � Gi(x, y, yi)

is closed, wi ∈ Gi(x, y, yi) and ui ∈ wi + Ci(x) ⊆ Gi(x, y, yi) + Ci(x). This shows that
Gi(x, y, vi) ⊆ Gi(x, y, yi) + Ci(x) for all vi ∈ Ti(x).

By assumption, Si and Ti are closed. Hence xi ∈ Si(x) and yi ∈ Ti(x) and y = (yi)i∈I ∈
Y . Let zi ∈ Fi(x, y). Since Fi is l.s.c., there exists a net {zα

i }α∈� such that zα
i ∈ Fi(x

α, yα)

for all α ∈ � and zα
i → zi . We see zα

i ∈ Ci(x
α). Since Ci is closed, zi ∈ Ci(x). This

shows that Fi(x, y) ⊆ Ci(x). By assumption, X is a closed set, we have x ∈ X. Therefore
(x, y) ∈ Mi and Mi is a closed set for each i ∈ I . But Mi ⊆ (

∏
i∈I Si(X)) × (

∏
i∈I Ti(X))

and Si and Ti are compact, we see Mi is a compact set for each i ∈ I , and M = ∩i∈IMi is a
nonempty compact set.

Since f : X × Y � Z0 is an u.s.c. multivalued amp with nonempty compact values,
f (M) is a compact set [7]. Min(f (M)/C0) �= ∅ [7] and Theorem 4.1 follows. �

Remark 4.1 If I is a singleton, Theorem 4.1 is still different from Theorem 4.1 in [18].

Remark 4.2 In Theorem 4.1, if f : X×Y → R is a l.s.c. function, then there exists a solution
of the problem:

Min(x,y)f (x, y) such that x ∈ X, y ∈ Y , for each i ∈ I , xi ∈ Si(x), yi ∈ Ti(x), Fi(x, y) ⊆
Ci(x), and Gi(x, y, vi) ⊆ Gi(x, y, yi) + Ci(x) for all vi ∈ Ti(x).
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Theorem 4.2 In Theorem 4.1, if we assume furthermore that for each i ∈ I , IMin(Gi(x, y,

yi)/Ci(x)) �= ∅ for each (x, y) = (x, (yi)i∈I ) ∈ X × Y . Then there exists a solution to the
following problem:
Min(f (K)/C0) �= ∅, where K = {(x, y) : x = (xi)i∈I ∈ X, y = (yi)i∈I such
that for each i ∈ I , xi ∈ Si(x), yi ∈ Ti(x), Fi(x, y) ⊆ Ci(x), and Gi(x, y, vi) ∩
IMin(Gi(x, y, Ti(x))/Ci(x)) �= ∅}.
Proof By assumption, IMin(Gi(x, y, yi)/Ci(x)) �= ∅. Then

Gi(x, y, vi) ⊆ Gi(x, y, yi) + Ci(x) for all vi ∈ Ti(x)

if and only if Gi(x, y, yi) ∩ IMinGi(x, y, Ti(x)) �= ∅. Then Theorem 4.2 follows imme-
diately from Theorem 4.1. �

If Zi = R and Ci(x) = [0,∞) for all x ∈ X, the following Corollary follows immediately
from Theorem 4.2.

Corollary 4.1 In Theorem 4.1, if conditions (ii), (iv), and (v) are replaced by (ii′), (iv′), and
(v′), where

(ii′) Fi : X × Y → R is a continuous function such that for each y ∈ Y , xi → Fi(x, y) is
quasiconvex;

(iv′) For each (x, y) ∈ X × Y , there exists w = (wi)i∈I ∈ Y such that Fi(w, y) ≥ 0 and
wi ∈ Si(x);

(v′) Gi : X × Y × Yi → R is a continuous function such that for each x ∈ X, (y, vi) →
Gi(x, y, vi) is affine and for each (x, y) ∈ X × Y , vi → Gi(x, y, vi) is quasiconvex.

Then there exists a solution to the following problem:
Min(f (x, y)/C0) �= ∅, x ∈ X, y ∈ Y such that for each i ∈ I , xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ≥ 0, and yi is a solution of the problem Minvi∈Ti (x)(Gi(x, y, vi)).

Remark 4.3 Corollary 4.1 is different from Corollary 5.3 [13], Corollary 3.1 [16].

Theorem 4.3 For each i ∈ I , suppose that Xi is compact and (i), (iv) of Theorem 3.10.
Conditions (ii) and (iii) of Theorem 3.10 are replaced by (ii′) and (iii′), respectively, where

(ii′) Gi : X × Y × Yi � Zi is a continuous multivalued map such that for each (x, y) ∈
X × Y , vi � Gi(x, y, vi) is Ci(x)-quasiconvex; and

(iii′) Ti : X � Yi is a continuous multivalued map with nonempty closed convex values.

Suppose further that Z0 is a real t.v.s, C0 is a proper closed convex cone in Z0 and h :
X × Y � Z0 is an u.s.c. multivalued map with nonempty compact values. Then there exists
a solution to the following problem:
Min(h(x, y)/C0) �= ∅, x ∈ X, y ∈ Y such that for each i ∈ I , yi ∈ Ti(x) and Gi(x, y, vi) ⊆
Gi(x, y, yi) + Ci(x) for all vi ∈ Ti(x).

Proof For each i ∈ I , let Mi = {(x, y): x = (xi)i∈I ∈ X, y = (yi)i∈I , yi ∈ Ti(x), and
Gi(x, y, vi) ⊆ Gi(x, y, yi) + Ci(x) for all vi in Ti(x)}. By Theorem 3.10, ∩i∈IMi �= ∅.
Let M = ∩i∈IMi . By condition (iv) of Theorem 3.10, if (x, y) ∈ M , then y ∈ K . By
assumption, Xi is compact for each i ∈ I . Therefore, X = ∏

i∈I Xi is compact. Hence X is
closed. It is easy to see Mi is closed for each i ∈ I . Therefore, ∩i∈IMi is closed. Then M is a
nonempty closed subset of X × K and X × K is compact, M is compact. Since h is an u.s.c.
multivalued map with nonempty compact values, h(M) is a nonempty compact set [7] and
Min(h(M)/C0) �= ∅ [4]. Therefore there exists a solution to the problem: Min(x,y)h(x, y),
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x ∈ X, y ∈ Y such that for each i ∈ I , yi ∈ Ti(x) and Gi(x, y, vi) ⊆ Gi(x, y, yi) + Ci(x)

for all vi ∈ Ti(x). �

Following the same arguments as in Theorem 4.2, we have the following Theorem.

Theorem 4.4 In Theorem 4.3, if we assume further that for each x ∈ X and y ∈ Y ,
IMin(Gi(x, yi, yi)/Ci(x)) �= ∅. Then there exists a solution to the problem:
Min(x,y)h(x, y), x ∈ X, y ∈ Y , yi ∈ Ti(x) and Gi(x, yi, yi) ∩ IMin(Gi(x, yi, ui)/

Ci(x)) �= ∅.
Apply Theorem 4.3 and follow the same arguments as in Corollary 4.1, we have the

following Corollary.

Corollary 4.2 In Theorem 4.3, if condition (ii′) is replaced by (ii′′) and condition (iv) of
Theorem 3.10 is replaced by (iv′), where (ii′′) (iv′)

(ii′′) Gi : X × Yi × Yi → R is a continuous function and for each (x, yi) ∈ X × Yi ,
vi → Gi(x, yi, vi) is quasiconvex; and

(iv′) There exist a nonempty compact subset K of Y and a nonempty compact conves subset
Di of Yi for all i ∈ I such that for each y ∈ Y \ K and each x ∈ X, there exist j ∈ I

and uj ∈ Tj (x) ∩ Dj such that Gj(x, yj , uj ) < Gj (x, yj , yj ).

Then there exists a solution to the following problem:
Min(x,y)h(x, y), x = (xi)i∈I ∈ X, y = (yi)i∈I such that for each i ∈ I , yi ∈ Ti(x), and
Gi(x, yi, vi) ≥ Gi(x, yi, yi) for all vi ∈ Ti(x).

Lemma 4.1 Let I be any index set. For each i ∈ I , let X be a nonempty convex subset of
t.v.s. E, Yi be a nonempty convex subset of t.v.s. Vi , Zi be a real t.v.s.. For each i ∈ I , suppose
that

(i) Gi : X × Yi × Yi � Zi is an affine multivalued map;
(ii) Ti : X � Yi is a convex and concave mutltivalued map; and

(iii) Ci : X � Zi is a concave multivalued map.

Let Mi = {(x, y) ∈ X × Y : y = (yi)i∈I ,Gi(x, yi, vi) ⊆ Gi(x, yi, yi) + Ci(x) for all
vi ∈ Ti(x)}. Then Mi is a convex set for all i ∈ I .

Proof Let (x, y), (x′, y′) ∈ Mi , and λ ∈ [0, 1]. Then x, x′ ∈ X, y = (yi)i∈I ∈ Y ,
y′ = (y′

i )i∈I ∈ Y , yi ∈ Ti(x), y′
i ∈ Ti(x

′), Gi(x, yi, vi) ⊆ Gi(x, yi, yi) + Ci(x) for all
vi ∈ Ti(x) and Gi(x, y′

i , vi) ⊆ Gi(x, y′
i , y

′
i ) + Ci(x) for all vi ∈ Ti(x).

We have (λx + (1−λ)x′, λy + (1−λ)y′) ∈ X×Y . Since Ti is concave, λyi + (1−λ)y′
i ∈

Ti(λx + (1 − λ)x′). Let ui ∈ Ti(λx + (1 − λ)x′). Since Ti is convex, there exist vi ∈ Ti(x),
v′
i ∈ Ti(x

′) such that ui = λvi + (1 − λ)v′
i . By (i) and (iii),

Gi(λx + (1 − λ)x′, λyi + (1 − λ)y′
i , ui)

= Gi(λx + (1 − λ)x′, λyi + (1 − λ)y′
i , λyi + (1 − λ)y′

i )= λGi(x, yi, vi) + (1 − λ)Gi(x
′, y′

i , v
′
i )⊆ λGi(x, yi, yi) + λCi(x) + (1 − λ)Gi(x

′, y′
i , y

′
i ) + (1 − λ)Ci(x

′)
⊆ Gi(λx + (1 − λ)x′, λyi + (1 − λ)y′

i , λyi + (1 − λ)y′
i ) + Ci(λx + (1 − λ)x′).

Therefore, (λx + (1 − λ)x′, λy + (1 − λ)y′) ∈ Mi and Mi is convex. �

Theorem 4.5 Let X be a nonempty convex subset of a t.v.s. E, I be any index set. For
each i ∈ I , let Yi be a nonempty convex subset of a Housdorff t.v.s. Vi , Zi be a real t.v.s.
Y = ∏

i∈I Yi . For each i ∈ I , suppose that
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(i) Ci : X � Zi is a concave multivalued amp such that for each x ∈ X, Ci(x) is a
nonempty closed convex cone;

(ii) Gi : X × Yi × Yi � Zi is an affine u.s.c. multivalued map with nonempty compact
values such that for each (x, vi) ∈ X × Yi , yi � Gi(x, yi, vi) is l.s.c. and for each
(x, yi) ∈ X × Yi , vi � Gi(x, yi, vi) is Ci(x)-quasiconvex;

(iii) Ti : X � Yi is a concave and convex multivalued map with nonempty closed convex
values;

(iv) h : X × Y → R is a l.s.c. quasiconvex function; and
(v) There exist a nonempty compact subset K of Y and a nonempty compact convex subset

Di of Yi for all i ∈ I such that for each y = (yi)i∈I ∈ Y \ K and each x ∈ X, there
exist j ∈ I , and uj ∈ Tj (x)∩Dj such that Gj(x, y, uj ) � Gj(x, y, yj )+Cj (x); and

(vi) There exist a nonempty compact subset L of M and a nonempty compact convex subset
D of M such that for each (x, y) ∈ M \ L, there exists (u, v) ∈ D such that h(u, v) <

h(x, y), where M is defend as in the proof of Theorem 5.1.

Then there exists a solution to the problem:
Min(h(x, y)/C0) �= ∅, x ∈ X, y = (yi)i∈I such that for all i ∈ I , yi ∈ Ti(x), Gi(x, yi, vi)

⊆ Gi(x, y, yi) + Ci(x) for all vi ∈ Ti(x).

Proof Let Mi and M be defined as in Lemma 4.1. By theorem 3.10 that there exist x ∈ X,
y = (yi)i∈I ∈ Y such that for all i ∈ I , yi ∈ Ti(x) and

Gi(x, y, vi) ⊆ Gi(x, y, yi) + Ci(x) for all vi ∈ Ti(x).

That is, M = ∩i∈IMi �= ∅. By Lemma 4.1 that Mi is convex for all i ∈ I . Therefore, M

is a nonempty convex set in X × Y . Let P : M � M be defend by P(x, y) = {(u, v) ∈
M : h(u, v) < h(x, y)}. Then (x, y) /∈ P(x, y) for all (x, y) ∈ D.

By (iv), P(x, y) is convex for each (x, y) ∈ M and P −1(u, v) is open in M for each
(u, v) ∈ M . By (vi), for each (x, y) ∈ M \ L, there exists (u, v) ∈ D such that (x, y) ∈
P −1(u, v).

By Theorem 2.1, that there exists (x̄, ȳ) ∈ M such that P(x̄, ȳ) = ∅. That is, h(u, v) ≥
h(x̄, ȳ) for all (u, v) ∈ M . This completes the proof. �

Remark 4.4 In Theorem 4.5, if we assume further that for each x ∈ X, yi ∈ Yi ,
IMin(Gi(x, y, yi)/Ci(x)) �= ∅. Then there exists a solution to the problem: Min(h(x, y)/

C0) �= ∅, x ∈ X, y = (yi)i∈I such that for each i ∈ I , yi ∈ Ti(x), Gi(x, y, yi) ∩
IMin(Gi(x, y, Ti(x))/Ci(x)) �= ∅.
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